Spatio-Temporal Change Detection from Multidimensional Arrays: detecting deforestation from MODIS time series

نویسندگان

  • Meng Lua
  • Edzer Pebesma
  • Alber Sanchez
  • Jan Verbesselt
چکیده

Growing availability of long-term satellite imagery enables change modeling with advanced spatio-temporal statistical methods. Multidimensional arrays naturally match the structure of spatio-temporal satellite data and can provide a clean modeling process for complex spatio-temporal analysis over large datasets. Our study case illustrates the detection of breakpoints in MODIS imagery time series for land cover change in the Brazilian Amazon using the BFAST (Breaks For Additive Season and Trend) change detection framework. BFAST includes an Empirical Fluctuation Process (EFP) to alarm the change and a change point time locating process. We extend the EFP to account for the spatial autocorrelation between spatial neighbors and assess the effects of spatial correlation when applying BFAST on satellite image time series. In addition, we evaluate how sensitive EFP is to the assumption that its time series residuals are temporally uncorrelated, by modelling it as an autoregressive process. We use arrays as a unified data structure for the modeling process, R to execute the analysis, and an array database management system to scale computation. Our results point to BFAST as a robust approach against mild temporal and spatial correlation, to the use of arrays to ease the modeling process of spatio-temporal change, and towards communicable and scalable analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distance metric-based forest cover change detection using MODIS time series

More than 12 years of global observations are now available from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS). As this time series grows, the MODIS archive provides new opportunities for identification and characterization of land cover at regional to global spatial scales and interannual to decadal temporal scales. In particular, the high temporal frequency of MODIS provides a ...

متن کامل

Monitoring Deforestation at Sub-Annual Scales as Extreme Events in Landsat Data Cubes

Current methods for monitoring deforestation from satellite data at sub-annual scales require pixel time series to have many historical observations in the reference period to model normal forest dynamics before detecting deforestation. However, in some areas, pixel time series often do not have many historical observations. Detecting deforestation at a pixel with scarce historical observations...

متن کامل

Spatio-temporal trend and change detection of temperature and precipitation of Kashafroud basin

 The study of meteorological characteristics and its variability is important in assessing the climate change impacts for water resources management. Trend analysis of hydrological and meteorological time series is a method for determining the change in climate variables that is performed with different parametric and non-parametric methods. In this research, the annual, seasonal and monthly tr...

متن کامل

Forest Disturbance Mapping Using Dense Synthetic Landsat/MODIS Time-Series and Permutation-Based Disturbance Index Detection

Spatio-temporal information on process-based forest loss is essential for a wide range of applications. Despite remote sensing being the only feasible means of monitoring forest change at regional or greater scales, there is no retrospectively available remote sensor that meets the demand of monitoring forests with the required spatial detail and guaranteed high temporal frequency. As an altern...

متن کامل

Dimension Reduction of Multi-Spectral Satellite Image Time Series to Improve Deforestation Monitoring

In recent years, sequential tests for detecting structural changes in time series have been adapted for deforestation monitoring using satellite data. The input time series of such sequential tests is typically a vegetation index (e.g., NDVI), which uses two or three bands and ignores all other bands. Being limited to a vegetation index will not benefit from the richer spectral information prov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016